03 Wo ich schon mal da bin - Prof. Dr. Kerstin Prechel
KI, Dystopien und süße kleine Robben
01.11.2024 54 min
Zusammenfassung & Show Notes
In unserer dritten Folge sprechen wir mit KI- und Ethik-Expertin Prof. Dr. Kerstin Prechel über die neuen Herausforderungen an Ärzte, aber auch an uns alle, die durch das Fortschreiten der KI-Technologien auf uns warten. Es geht außerdem um kleine Roboter mit Strickmützchen, niedliche Robben und Hollywood - irgendwie.
Eine Folge, nach der es definitiv mehr Fragen als vorher gibt ...
Eine Folge, nach der es definitiv mehr Fragen als vorher gibt ...
Relevante Studien zum Thema KI und Medizin:
(Buchempfehlung nicht wissenschaftlich: Marc-Uwe Kling "Views")
(Buchempfehlung nicht wissenschaftlich: Marc-Uwe Kling "Views")
Abdul-Kader, S. A., & Woods, J. (2015).
Survey on chatbot design techniques in speech conversation systems. International Journal of Advanced Computer Science and Applications, 6(7), 72-80.
Survey on chatbot design techniques in speech conversation systems. International Journal of Advanced Computer Science and Applications, 6(7), 72-80.
Alvarado, R. (2022).
What kind of trust does AI deserve, if any? AI and Ethics. DOI: 10.1007/s43681-022-00224-x.
What kind of trust does AI deserve, if any? AI and Ethics. DOI: 10.1007/s43681-022-00224-x.
Amann, J., Vetter, D., Blomberg, S.N., Christensen, H.C., Coffee, M., Gerke, S., Gilbert, T.K., Hagendorff, T., Holm, S., Livne, M., Spezzatti, A., Strümke, I., Zicari, R.V., & Madai, V.I. (2022).
To explain or not to explain? Artificial intelligence explainability in clinical decision support systems. PLOS Digital Health 1(2), e0000016. DOI: 10.1371/journal.pdig.0000016 [Open Access].
To explain or not to explain? Artificial intelligence explainability in clinical decision support systems. PLOS Digital Health 1(2), e0000016. DOI: 10.1371/journal.pdig.0000016 [Open Access].
Arbelaez Ossa, L., Starke, G., Lorenzini, G., Vogt, J.E., Shaw, D.M., & Elger, B.S. (2022).
Re-focusing explainability in medicine. Digital Health, 8. DOI: 10.1177/20552076221074488 [Open Access].
Re-focusing explainability in medicine. Digital Health, 8. DOI: 10.1177/20552076221074488 [Open Access].
Babushkina, D. (2022).
Are we justified attributing a mistake in diagnosis to an AI diagnostic system? AI and Ethics. DOI: 10.1007/s43681-022-00189-x [Open Access].
Are we justified attributing a mistake in diagnosis to an AI diagnostic system? AI and Ethics. DOI: 10.1007/s43681-022-00189-x [Open Access].
Baile, W. F., Buckman, R., Lenzi, R., Glober, G., Beale, E. A., & Kudelka, A. P. (2000).
SPIKES—A six-step protocol for delivering bad news: Application to the patient with cancer. The Oncologist, 5(4), 302-311.
SPIKES—A six-step protocol for delivering bad news: Application to the patient with cancer. The Oncologist, 5(4), 302-311.
Benrimoh, D., Hawco, C., & Fratila, R. (2020).
Using artificial intelligence to support patients facing cancer: From chatbot to clinical decision-making tools. Current Oncology Reports, 22(11), 1-8.
Using artificial intelligence to support patients facing cancer: From chatbot to clinical decision-making tools. Current Oncology Reports, 22(11), 1-8.
Bickmore, T. W., & Giorgino, T. (2006).
Health dialog systems for patients and consumers. Journal of Biomedical Informatics, 39(5), 556-571.
Health dialog systems for patients and consumers. Journal of Biomedical Informatics, 39(5), 556-571.
Bickmore, T. W., & Schulman, D. (2011).
Practical approaches to comforting patients with relational agents. Interacting with Computers, 23(3), 279-288.
Practical approaches to comforting patients with relational agents. Interacting with Computers, 23(3), 279-288.
Bleher, H., & Braun, M. (2022).
Diffused responsibility: Attributions of responsibility in the use of AI-driven clinical decision support systems. AI and Ethics, 2(4), 747-761. DOI: 10.1007/s43681-022-00135-x [Open Access].
Diffused responsibility: Attributions of responsibility in the use of AI-driven clinical decision support systems. AI and Ethics, 2(4), 747-761. DOI: 10.1007/s43681-022-00135-x [Open Access].
Chen, H., Gomez, C., Huang, C.-M., & Unberath, M. (2022).
Explainable medical imaging AI needs human-centered design: Guidelines and evidence from a systematic review. npj Digital Medicine, 5, 156. DOI: 10.1038/s41746-022-00699-2 [Open Access].
Explainable medical imaging AI needs human-centered design: Guidelines and evidence from a systematic review. npj Digital Medicine, 5, 156. DOI: 10.1038/s41746-022-00699-2 [Open Access].
Combi, C., Amico, B., Bellazzi, R., Holzinger, A., Moore, J.H., Zitnik, M., & Holmes, J.H. (2022).
A manifesto on explainability for artificial intelligence in medicine. Artificial Intelligence in Medicine, 133, 102423. DOI: 10.1016/j.artmed.2022.102423 [Open Access].
A manifesto on explainability for artificial intelligence in medicine. Artificial Intelligence in Medicine, 133, 102423. DOI: 10.1016/j.artmed.2022.102423 [Open Access].
Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017).
Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115-118.
Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115-118.
Floridi, L., & Cowls, J. (2019).
A unified framework of five principles for AI in society. Harvard Data Science Review, 1(1), 1-15.
A unified framework of five principles for AI in society. Harvard Data Science Review, 1(1), 1-15.
Friedrich, A.B., Mason, J., & Malone, J.R. (2022).
Rethinking explainability: Toward a postphenomenology of black-box artificial intelligence in medicine. Ethics and Information Technology, 24, 8. DOI: 10.1007/s10676-022-09631-4.
Rethinking explainability: Toward a postphenomenology of black-box artificial intelligence in medicine. Ethics and Information Technology, 24, 8. DOI: 10.1007/s10676-022-09631-4.
Funer, F. (2022).
Accuracy and Interpretability: Struggling with the Epistemic Foundations of Machine Learning-Generated Medical Information and Their Practical Implications for the Doctor-Patient Relationship. Philosophy & Technology 35(5). DOI: 10.1007/s13347-022-00505-7 [Open Access].
Accuracy and Interpretability: Struggling with the Epistemic Foundations of Machine Learning-Generated Medical Information and Their Practical Implications for the Doctor-Patient Relationship. Philosophy & Technology 35(5). DOI: 10.1007/s13347-022-00505-7 [Open Access].
Funer, F. (2022).
The Deception of Certainty: how Non-Interpretable Machine Learning Outcomes Challenge the Epistemic Authority of Physicians. A deliberative-relational Approach. Medicine, Health Care and Philosophy, 25, 167–178. DOI: 10.1007/s11019-022-10076-1 [Open Access].
The Deception of Certainty: how Non-Interpretable Machine Learning Outcomes Challenge the Epistemic Authority of Physicians. A deliberative-relational Approach. Medicine, Health Care and Philosophy, 25, 167–178. DOI: 10.1007/s11019-022-10076-1 [Open Access].
Gardner, A., Smith, A.L., Steventon, A., Coughlan, E., & Oldfield, M. (2022).
Ethical funding for trustworthy AI: Proposals to address the responsibility of funders to ensure that projects adhere to trustworthy AI practice. AI and Ethics, 2, 277–291.
Ethical funding for trustworthy AI: Proposals to address the responsibility of funders to ensure that projects adhere to trustworthy AI practice. AI and Ethics, 2, 277–291.
Grote, T., & Berens, P. (2020).
On the ethics of algorithmic decision-making in healthcare. Journal of Medical Ethics, 46(3), 205-211.
On the ethics of algorithmic decision-making in healthcare. Journal of Medical Ethics, 46(3), 205-211.
Hallowell, N., Badger, S., Sauerbrei, A., Nellåker, C., & Kerasidou, A. (2022).
“I don’t think people are ready to trust these algorithms at face value”: Trust and the use of machine learning algorithms in the diagnosis of rare disease. BMC Medical Ethics, 23, 112. DOI: 10.1186/s12910-022-00842-4 [Open Access].
“I don’t think people are ready to trust these algorithms at face value”: Trust and the use of machine learning algorithms in the diagnosis of rare disease. BMC Medical Ethics, 23, 112. DOI: 10.1186/s12910-022-00842-4 [Open Access].
Hasani, N., Morris, M.A., Rhamim, A., Summers, R.M., Jones, E., Siegel, E., & Saboury, B. (2022).
Trustworthy Artificial Intelligence in Medical Imaging. PET Clin, 17(1), 1–12. DOI: 10.1016/j.cpet.2021.09.007.
Trustworthy Artificial Intelligence in Medical Imaging. PET Clin, 17(1), 1–12. DOI: 10.1016/j.cpet.2021.09.007.
Herzog, C. (2022).
On the risk of confusing interpretability with explicability. AI and Ethics, 2, 219–225.
On the risk of confusing interpretability with explicability. AI and Ethics, 2, 219–225.
Herzog, C. (2022).
On the ethical and epistemological utility of explicable AI in medicine. Philosophy & Technology, 35, 50. DOI: 10.1007/s13347-022-00546-y [Open Access].
On the ethical and epistemological utility of explicable AI in medicine. Philosophy & Technology, 35, 50. DOI: 10.1007/s13347-022-00546-y [Open Access].
Hatherley, J., Sparrow, R., & Howard, M. (2022).
The virtues of interpretable medical artificial intelligence. Cambridge Quarterly of Healthcare Ethics. DOI: 10.1017/S0963180122000305 [Open Access].
The virtues of interpretable medical artificial intelligence. Cambridge Quarterly of Healthcare Ethics. DOI: 10.1017/S0963180122000305 [Open Access].
Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., ... & Wang, Y. (2017).
Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2(4), 230-243.
Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2(4), 230-243.
Jobin, A., Ienca, M., & Vayena, E. (2019).
The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389-399.
The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389-399.
Kawamleh, S. (2022).
Against explainability requirements for ethical artificial intelligence in health care. AI and Ethics. DOI: 10.1007/s43681-022-00212-1.
Against explainability requirements for ethical artificial intelligence in health care. AI and Ethics. DOI: 10.1007/s43681-022-00212-1.
Kawamleh, S. (2022).
Against explainability requirements for ethical artificial intelligence in health care. AI and Ethics. DOI: 10.1007/s43681-022-00212-1.
Against explainability requirements for ethical artificial intelligence in health care. AI and Ethics. DOI: 10.1007/s43681-022-00212-1.
Kemp, H., Freyer, N., & Nagel, S.K. (2022).
Justice and the normative standards of explainability in healthcare. Philosophy & Technology 35, 100. DOI: 10.1007/s13347-022-00598-0 [Open Access].
Justice and the normative standards of explainability in healthcare. Philosophy & Technology 35, 100. DOI: 10.1007/s13347-022-00598-0 [Open Access].
Kerasidou, C., Kerasidou, A., Buscher, M., & Wilkinson, S. (2022).
Before and beyond trust: Reliance in medical AI. Journal of Medical Ethics, 48(11), 852–856. DOI: 10.113
Before and beyond trust: Reliance in medical AI. Journal of Medical Ethics, 48(11), 852–856. DOI: 10.113
Kiseleva, A., Kotzinos, D., & De Hert, P. (2022).
Transparency of AI in healthcare as a multilayered system of accountabilities: Between legal requirements and technical limitations. Frontiers in Artificial Intelligence, 5, 879603. DOI: 10.3389/frai.2022.879603.
Transparency of AI in healthcare as a multilayered system of accountabilities: Between legal requirements and technical limitations. Frontiers in Artificial Intelligence, 5, 879603. DOI: 10.3389/frai.2022.879603.
Lütge, C. (2020).
Ethik der Künstlichen Intelligenz. Springer.
Ethik der Künstlichen Intelligenz. Springer.
Lütge, C., & Maas, J. (2021).
The Ethics of AI and Robotics: A German Perspective. In Ethics of Artificial Intelligence and Robotics: Fundamentals and Applications (pp. 33-51). Springer.
The Ethics of AI and Robotics: A German Perspective. In Ethics of Artificial Intelligence and Robotics: Fundamentals and Applications (pp. 33-51). Springer.
McDougall, R. J. (2019).
Computer knows best? The need for value-flexibility in medical AI. Journal of Medical Ethics, 45(3), 156-160.
Computer knows best? The need for value-flexibility in medical AI. Journal of Medical Ethics, 45(3), 156-160.
McTear, M. F., Callejas, Z., & Griol, D. (2016).
The role of conversational agents in healthcare: A literature review. Journal of Medical Systems, 40(7), 1-12.
The role of conversational agents in healthcare: A literature review. Journal of Medical Systems, 40(7), 1-12.
Milne-Ives, M., de Cock, C., Lim, E., Shehadeh, M. H., de Pennington, N., Mole, G., & Meinert, E. (2020).
The effectiveness of artificial intelligence conversational agents in health care: Systematic review. Journal of Medical Internet Research, 22(10), e20346.
The effectiveness of artificial intelligence conversational agents in health care: Systematic review. Journal of Medical Internet Research, 22(10), e20346.
Morley, J., Floridi, L., Kinsey, L., & Elhalal, A. (2020).
From what to how: An initial review of publicly available AI ethics tools, methods, and research to translate principles into practices. Science and Engineering Ethics, 26(4), 2141-2168.
From what to how: An initial review of publicly available AI ethics tools, methods, and research to translate principles into practices. Science and Engineering Ethics, 26(4), 2141-2168.
Ott, T., & Dabrock, P. (2022).
Transparent human – (non-)transparent technology? The Janus-faced call for transparency in AI-based health care technologies. Frontiers in Genetics 13, 902960. DOI: 10.3389/fgene.2022.902960 [Open Access].
Transparent human – (non-)transparent technology? The Janus-faced call for transparency in AI-based health care technologies. Frontiers in Genetics 13, 902960. DOI: 10.3389/fgene.2022.902960 [Open Access].
Petch, J., Di, S., & Nelson, W. (2022).
Opening the black box. The promise and limitations of explainable machine learning in cardiology. Canadian Journal of Cardiology 38(2), 204–213. DOI: 10.1016/j.cjca.2021.09.004 [Open Access].
Opening the black box. The promise and limitations of explainable machine learning in cardiology. Canadian Journal of Cardiology 38(2), 204–213. DOI: 10.1016/j.cjca.2021.09.004 [Open Access].
Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., ... & Ng, A. Y. (2017).
CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint arXiv:1711.05225.
CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv preprint arXiv:1711.05225.
Salahuddin, Z., Woodruff, H.C., Chatterjee, A., & Lambin, P. (2022).
Transparency of deep neural networks for medical image analysis. A review of interpretability methods. Computers in Biology and Medicine 140, 105111. DOI: 10.1016/j.compbiomed.2021.105111 [Open Access].
Transparency of deep neural networks for medical image analysis. A review of interpretability methods. Computers in Biology and Medicine 140, 105111. DOI: 10.1016/j.compbiomed.2021.105111 [Open Access].
Sand, M., Durán, J.M., & Jongsma, K.R. (2022).
Responsibility beyond design: Physicians’ requirements for ethical medical AI. Bioethics 36(2), 162–169. DOI: 10.1111/bioe.12887 [Open Access].
Responsibility beyond design: Physicians’ requirements for ethical medical AI. Bioethics 36(2), 162–169. DOI: 10.1111/bioe.12887 [Open Access].
Schmitz, R., Werner, R., Repici, A., Bisschops, R., Meining, A., Zornow, M., Messmann, H., Hassan, C., Sharma, P., & Rösch, T. (2022).
Artificial intelligence in GI endoscopy: Stumbling blocks, gold standards and the role of endoscopy societies. Gut 71(3), 451–454. DOI: 10.1136/gutjnl-2020-323115.
Artificial intelligence in GI endoscopy: Stumbling blocks, gold standards and the role of endoscopy societies. Gut 71(3), 451–454. DOI: 10.1136/gutjnl-2020-323115.
Shickel, B., Tighe, P. J., Bihorac, A., & Rashidi, P. (2018).
Deep EHR: A survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE Journal of Biomedical and Health Informatics, 22(5), 1589-1604.
Deep EHR: A survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE Journal of Biomedical and Health Informatics, 22(5), 1589-1604.
Starke, G., & van den Brule, R., Elger, B.S., & Haselager, P. (2022).
Intentional machines: A defence of trust in medical artificial intelligence. Bioethics 36, 154–161.
Intentional machines: A defence of trust in medical artificial intelligence. Bioethics 36, 154–161.
Starke, G., & Ienca, M. (2022).
Misplaced trust and distrust: How not to engage with medical artificial intelligence. Cambridge Quarterly of Healthcare Ethics. DOI: 10.1017/S0963180122000445 [Open Access].
Misplaced trust and distrust: How not to engage with medical artificial intelligence. Cambridge Quarterly of Healthcare Ethics. DOI: 10.1017/S0963180122000445 [Open Access].
Topol, E. J. (2019).
High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44-56.
High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), 44-56.
Ursin, F., Timmermann, C., & Steger, F. (2022).
Explicability of artificial intelligence in radiology: Is a fifth bioethical principle conceptually necessary? Bioethics 36(2), 143–153. DOI: 10.1111/bioe.12918 [Open Access].
Explicability of artificial intelligence in radiology: Is a fifth bioethical principle conceptually necessary? Bioethics 36(2), 143–153. DOI: 10.1111/bioe.12918 [Open Access].
Verdicchio, M., & Perin, A. (2022).
When doctors and AI interact: On human responsibility for artificial risks. Philosophy & Technology 35, 11. DOI: 10.1007/s13347-022-00506-6 [Open Access].
When doctors and AI interact: On human responsibility for artificial risks. Philosophy & Technology 35, 11. DOI: 10.1007/s13347-022-00506-6 [Open Access].
Wadden, J.J. (2022).
Defining the undefinable: The black box problem in healthcare artificial intelligence. Journal of Medical Ethics 48(10), 764–768. DOI: 10.1136/medethics-2021-107529.
Defining the undefinable: The black box problem in healthcare artificial intelligence. Journal of Medical Ethics 48(10), 764–768. DOI: 10.1136/medethics-2021-107529.
Winter, P., & Carusi, A. (2022).
‘If you’re going to trust the machine, then that trust has got to be based on something’: Validation and the co-constitution of trust in developing artificial intelligence (AI) for the early diagnosis of pulmonary hypertension (PH). Science & Technology Studies 35(4), 58–77. DOI: 10.23987/sts.102198 [Open Access].
‘If you’re going to trust the machine, then that trust has got to be based on something’: Validation and the co-constitution of trust in developing artificial intelligence (AI) for the early diagnosis of pulmonary hypertension (PH). Science & Technology Studies 35(4), 58–77. DOI: 10.23987/sts.102198 [Open Access].
Winter, P.D., & Carusi, A. (2022).
(De)troubling transparency: Artificial intelligence (AI) for clinical applications. Medical Humanities. DOI: 10.1136/medhum-2021-012318.
(De)troubling transparency: Artificial intelligence (AI) for clinical applications. Medical Humanities. DOI: 10.1136/medhum-2021-012318.
Yoon, C.H., Torrance, R., & Scheinerman, N. (2022).
Machine learning in medicine: Should the pursuit of enhanced interpretability be abandoned? Journal of Medical Ethics 48(9), 581–585. DOI: 10.1136/medethics-2020-107102 [Open Access].
Machine learning in medicine: Should the pursuit of enhanced interpretability be abandoned? Journal of Medical Ethics 48(9), 581–585. DOI: 10.1136/medethics-2020-107102 [Open Access].
Yu, K. H., Beam, A. L., & Kohane, I. S. (2018).
Artificial intelligence in healthcare. Nature Biomedical Engineering, 2(10), 719-731.
Artificial intelligence in healthcare. Nature Biomedical Engineering, 2(10), 719-731.